Exercise 66

(a) Use a graph to estimate the absolute maximum and minimum values of the function to two decimal places.
(b) Use calculus to find the exact maximum and minimum values.

$$
f(x)=e^{x}+e^{-2 x}, 0 \leq x \leq 1
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(e^{x}+e^{-2 x}\right) \\
& =\frac{d}{d x}\left(e^{x}\right)+\frac{d}{d x}\left(e^{-2 x}\right) \\
& =e^{x}+\left(e^{-2 x}\right) \cdot \frac{d}{d x}(-2 x) \\
& =e^{x}+\left(e^{-2 x}\right) \cdot(-2) \\
& =e^{x}-2 e^{-2 x}
\end{aligned}
$$

Set $f^{\prime}(x)=0$ and solve for x.

$$
\begin{gathered}
e^{x}-2 e^{-2 x}=0 \\
e^{x}=2 e^{-2 x} \\
e^{2 x} \times e^{x}=2 e^{-2 x} \times e^{2 x} \\
e^{3 x}=2 \\
\ln e^{3 x}=\ln 2 \\
3 x=\ln 2 \\
x=\frac{1}{3} \ln 2 \approx 0.231049
\end{gathered}
$$

$x=0.231049$ is within $0 \leq x \leq 1$, so evaluate f at this value.
$f\left(\frac{1}{3} \ln 2\right)=e^{\frac{1}{3} \ln 2}+e^{-\frac{2}{3} \ln 2}=e^{\ln 2^{1 / 3}}+e^{\ln 2^{-2 / 3}}=2^{1 / 3}+2^{-2 / 3} \approx 1.88988 \quad$ (absolute minimum)

Now evaluate the function at the endpoints. The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $0 \leq x \leq 1$.

$$
\begin{aligned}
& f(0)=e^{0}+e^{-2(0)}=2 \\
& f(1)=e^{1}+e^{-2(1)}=e+\frac{1}{e^{2}} \approx 2.85362
\end{aligned}
$$

(absolute maximum)
The graph below illustrates these results.

